Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 14(3): e0214254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901379

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant multisystemic disorders linked to two different genetic loci and characterized by several features including myotonia, muscle atrophy and insulin resistance. The aberrant alternative splicing of insulin receptor (IR) gene and post-receptor signalling abnormalities have been associated with insulin resistance, however the precise molecular defects that cause metabolic dysfunctions are still unknown. Thus, the aims of this study were to investigate in DM skeletal muscle biopsies if beyond INSR missplicing, altered IR protein expression could play a role in insulin resistance and to verify if the lack of insulin pathway activation could contribute to skeletal muscle wasting. Our analysis showed that DM skeletal muscle exhibits a lower expression of the insulin receptor in type 1 fibers which can contribute to the defective activation of the insulin pathway. Moreover, the aberrant insulin signalling activation leads to a lower activation of mTOR and to an increase in MuRF1 and Atrogin-1/MAFbx expression, possible explaining DM skeletal muscle fiber atrophy. Taken together our data indicate that the defective insulin signalling activation can contribute to skeletal muscle features in DM patients and are probably linked to an aberrant specific-fiber type expression of the insulin receptor.


Assuntos
Antígenos CD/análise , Resistência à Insulina , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Distrofia Miotônica/patologia , Receptor de Insulina/análise , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Front Neurol ; 9: 751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298045

RESUMO

Introduction: Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant genetic illness, characterized by a progressive loss of strength. Important deficits in cognitive functioning and a significant prevalence of psychiatric disorders have been previously reported. Methods:A neuropsychological and psychological assessment was carried out in 31 DM1 patients (61% males) in order to measure the cognitive functioning and explore their personality profiles. The MMSE Mini-Mental State Examination, Frontal Assessment Battery (FAB), ENB-2 Battery assessing memory (short term, long term and working memory), integration capacities, visual-spatial ability, attention (selective, divided, shifting/switching) executive functions, praxis, discrimination and logic capabilities and psychopathology Symptom Check List 90-R (SCL-90-R) were administered. The neuropsychological and psychological evaluation of DM1 patients was carried out taking into consideration the clinical parameters (CTG repeat, age at onset, disease duration, Muscular Impairment Rate Scale (MIRS), Medical Research Council Scale (MRC) and the Epworth Sleepiness Scales (EPS)). Results: Regarding psychopathology 19.4% of patients scored a moderate or high level of symptoms intensity index (GSI), 12.9% reported a high number of symptoms (PST) and 16.1% reported a high intensity level of the perceived symptoms (PSDI). Fatigue and daytime sleepiness resulted as being associated with higher levels of psychoticism (PSY). Only 1 patient reported a severe impairment in the spatial and temporal orientation, memory, language, praxis, attention and calculation. Longer disease duration was also associated with cognitive impairment evaluated through ENB-2 (p < 0.05). Discussions and Conclusions:There are indications of the utility of neuropsychological and psychological screening and support for these patients and their families due to the link between disease duration and cognitive performances. A proposal of a clinical protocol, with an illustration of a clinical case report of a family is presented.

3.
Sci Rep ; 8(1): 11058, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038349

RESUMO

A patient with an early severe myotonia diagnosed for Myotonic Dystrophy type 2 (DM2) was found bearing the combined effects of DM2 mutation and Nav1.4 S906T substitution. To investigate the mechanism underlying his atypical phenotype,whole-cell patch-clamp in voltage- and current-clamp mode was performed in myoblasts and myotubes obtained from his muscle biopsy. Results characterizing the properties of the sodium current and of the action potentials have been compared to those obtained in muscle cells derived from his mother, also affected by DM2, but without the S906T polymorphism. A faster inactivation kinetics and a +5 mV shift in the availability curve were found in the sodium current recorded in patient's myoblasts compared to his mother. 27% of his myotubes displayed spontaneous activity. Patient's myotubes showing a stable resting membrane potential had a lower rheobase current respect to the mother's while the overshoot and the maximum slope of the depolarizing phase of action potential were higher. These findings suggest that SCN4A polymorphisms may be responsible for a higher excitability of DM2 patients sarcolemma, supporting the severe myotonic phenotype observed. We suggest SCN4A as a modifier factor and that its screening should be performed in DM2 patients with uncommon clinical features.


Assuntos
Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Potenciais de Ação/fisiologia , Adulto , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Feminino , Humanos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mutação/genética , Mioblastos/citologia , Mioblastos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Sarcolema/genética , Sarcolema/metabolismo
4.
Front Neurol ; 9: 385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899727

RESUMO

Skeletal muscle sodium channelopathies are a group of neuromuscular disorders associated with mutations in the SCN4A gene. Because principal sodium channel isoforms expressed in the skeletal muscles and the heart are distinct one from the other, this condition usually spares cardiac functioning. Nonetheless, evidence on a possible link between skeletal muscle and cardiac sodium channelopathies has emerged in recent years. To date, eight patients bearing pathogenetic mutations in the SCN4A gene and manifesting cardiac electrophysiological alterations have been reported in literature. Among these patients, three presented a phenotype compatible with Brugada syndrome. We report the case of a 29-year-old patient affected by non-dystrophic myotonia associated with a p.G1306E mutation in the SCN4A gene, who presented symptoms of syncope and palpitation after the introduction of flecainide as an anti-myotonic agent. ECG and ajmaline challenge were consistent with the diagnosis of Brugada syndrome, leading to the implantation of a cardioverter defibrillator. No mutation in causative genes for Brugada syndrome was detected. Mexiletine treatment reduced myotonia without any cardiac adverse events. This case report highlights the clinical relevance of the recognition of cardiac electrophysiological alterations in skeletal muscle sodium channelopathies. The discovery of a possible pathogenetic linkage between skeletal muscle and cardiac sodium channelopathies may have significant implications in patients' management, also in light of the fact that class 1C anti-arrhythmics are potential triggers for life-threatening arrhythmias in patients with Brugada syndrome.

5.
Clin Chim Acta ; 484: 111-116, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29803895

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is caused by an expanded CTG repeat in the non-coding 3' UTR of the DMPK gene. PCR and Southern Blot Analysis (SBA) of long-range PCR represent the routine molecular testing most widely used for DM1 diagnosis. However, in these conventional methods artifacts such as allele dropout (ADO) represent a risk of misdiagnosis for DM1. Subjects, who show a single product by conventional methods, require a complementary technique such as triplet repeat primed PCR (TP-PCR). OBJECT: To estimate and minimize the incidence of allele dropout event in our diagnostic molecular laboratory by the use of new kit TP-PCR-based. METHODS: We retrospectively studied 190 DMPK alleles, on blood samples from to ninety-five subjects, previously genotyped by traditional methods to validate a new assay. The pedigree of a DM1 family was used to expand our analysis. RESULTS: TP-PCR assay correctly identified all 95/95 (100%) subjects and these results were in agreement with the other molecular laboratory. By conventional methods the amplification failure due to allele dropout in our cohort was in 12/190 (6.3%) DMPK alleles analyzed. When these 12 alleles were detected and solved by new assay, we found that the 2.6% was caused by primer sequence-dependent and the remaining 3.6% by polymerase-hindering secondary structures. CONCLUSIONS: Allele dropout could be considered as a potentially important problem in DM1 diagnosis that may lead to the attribution of a wrong genotype with long-term consequences for both proband and family.


Assuntos
Alelos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase Multiplex , Miotonina Proteína Quinase/genética , Técnicas de Amplificação de Ácido Nucleico , Patologia Molecular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Atherosclerosis ; 267: 110-115, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29121498

RESUMO

BACKGROUND AND AIMS: Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are dominant inherited muscular dystrophies with multiple systemic involvement, often producing cardiac injury. This study sought to determine the clinical significance of elevated high sensitivity cardiac troponin T and I (hs-cTnT and hs-cTnI), and N-terminal pro B-type natriuretic peptide (NT-pro-BNP) in this population. METHODS: Sixty DM patients (35 men and 25 women; mean age: 45.1 years, range: 12-73 years) underwent clinical cardiac investigations and measurements of serum hs-cTnT, hs-cTnI, creatine kinase (CK), and NT-proBNP. Left ventricular (LV) ejection fraction (EF) was assessed by echocardiography. RESULTS: Genetic analysis revealed that 46 of the 60 patients were DM1, and 14 DM2. Blood measurements showed persistent elevation of hs-cTnT and CK in 55/60 DM patients (91.73%). In contrast, hs-cTnI values were persistently normal throughout the study. Only 2 patients showed an EF <50%, being the overall range of this population between 40% and 79%. We found ECG abnormalities in 19 patients. Of these patients, 13 showed first or second-degree atrio ventricular (AV) blocks (PR interval ≥ 200 ms), 4 showed a left bundle branch block (LBBB) prolonged (QRS duration ≥120 ms), and 2 had an incomplete bundle branch block (QRS duration between 110 and 119 ms). After excluding patients with EF <50%, NT-pro-BNP measurement > 125 pg/mL was an independent predictor of ECG abnormalities. CONCLUSIONS: NT-pro-BNP levels may be considered to be used clinically to identify DM patients at increased risk of developing myocardial conduction abnormalities.


Assuntos
Distrofia Miotônica/patologia , Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Adolescente , Adulto , Idoso , Alelos , Biomarcadores/metabolismo , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Eletrocardiografia , Feminino , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Miotônica/metabolismo , Peptídeo Natriurético Encefálico/sangue , Pacientes Ambulatoriais , Fragmentos de Peptídeos/sangue , Prognóstico , Domínios Proteicos , Sistema de Registros , Análise de Regressão , Adulto Jovem
7.
Genet Test Mol Biomarkers ; 19(12): 703-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26505324

RESUMO

BACKGROUND: Myotonic dystrophy (DM) is the most common adult form of muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. Myotonic dystrophy type 2 (DM2) is caused by a [CCTG] expansion in the ZNF9/CNBP gene. The aim of this work was the validation of the new molecular diagnostic test Myotonic Dystrophy type 2 kit-FL. RESULTS: A cohort of 126 individuals was analyzed. The results show that 126/126 patients were correctly identified using the new molecular assay. In particular, 74 were DM2 positive, 39 were DM2/DM1 negative and 13 DM2 negative/DM1 positive. Approximately 9.5% (7/74) of the DM2-positive samples had a single sizeable expansion and 85% (63/74) showed multiple bands or smears. Comparative fluorescence in situ hybridization (FISH) analyses, on muscle biopsies, revealed that the sensitivity and specificity were very high (>99%). Equivalent analytical performances were obtained using different DNA extraction methods. Among affected individuals 87.5% (28/32) had electrical myotonia, 69% (22/32) proximal weakness, 41% (13/32) cataracts, and about 37.5% (12/32) cardiac conduction defects. FISH analysis and clinical data were used to support the genetic analysis.


Assuntos
Expansão das Repetições de DNA , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Proteínas de Ligação a RNA/genética , Kit de Reagentes para Diagnóstico , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Miotônica/patologia , Valor Preditivo dos Testes
8.
Biomed Res Int ; 2013: 958510, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762868

RESUMO

The expansion of the specific trinucleotide sequence, [CTG], is the molecular pathological mechanism responsible for the clinical manifestations of DM1. Many studies have described different molecular genetic techniques to detect DM1, but as yet there is no data on the analytical performances of techniques used so far in this disease. We therefore developed and validated a molecular method, "Myotonic Dystrophy SB kit," to better characterize our DM1 population. 113 patients were examined: 20 DM1-positive, 11 DM1/DM2-negative, and13 DM1-negative/DM2-positive, who had a previous molecular diagnosis, while 69 were new cases. This assay correctly identified 113/113 patients, and all were confirmed by different homemade assays. Comparative analysis revealed that the sensitivity and the specificity of the new kit were very high (>99%). Same results were obtained using several extraction procedures and different concentrations of DNA. The distribution of pathologic alleles showed a prevalence of the "classical" form, while of the 96 nonexpanded alleles 19 different allelic types were observed. Cardiac and neuromuscular parameters were used to clinically characterize our patients and support the new genetic analysis. Our findings suggest that this assay appears to be a very robust and reliable molecular test, showing high reproducibility and giving an unambiguous interpretation of results.


Assuntos
Técnicas e Procedimentos Diagnósticos , Miocárdio/patologia , Distrofia Miotônica/diagnóstico , Junção Neuromuscular/patologia , Adulto , Alelos , Southern Blotting , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...